organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,4-Bis(2-pyridylmethyleneaminomethyl)benzene

Chao Li, Fu-An Sun, Ming-Yang He, Huan Xu and Qun Chen*

Key Laboratory of Fine Petro-Chemical technology, Jiangsu Polytechnic University, Changzhou 213164, People's Republic of China Correspondence e-mail: chenqunjpu@yahoo.com

Received 1 December 2008; accepted 7 January 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.105; data-to-parameter ratio = 13.3.

The asymmetric unit of the centrosymmetric title compound, C₂₀H₁₈N₄, contains one half-molecule. The pyridine and benzene rings are oriented at a dihedral angle of $77.21 (7)^{\circ}$.

Related literature

For general background, see: Barboiu et al. (2006); Keegan et al. (2002); Yue et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$\gamma = 82.242 \ (8)^{\circ}$
$V = 414.9 (4) \text{ Å}^3$
Z = 1
Mo $K\alpha$ radiation
$\mu = 0.08 \text{ mm}^{-1}$
T = 296 (2) K
$0.32 \times 0.30 \times 0.23 \text{ mm}$

Data collection

Bruker SMART CCD area-detector 2909 measured reflections 1449 independent reflections diffractometer Absorption correction: multi-scan 1250 reflections with $I > 2\sigma(I)$ (SADABS; Sheldrick, 2000) $R_{\rm int} = 0.021$ $T_{\min} = 0.976, T_{\max} = 0.990$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ 109 parameters $wR(F^2) = 0.105$ H-atom parameters constrained S = 1.01 $\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^ \Delta \rho_{\rm min}$ = -0.18 e Å⁻³ 1449 reflections

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Center for Testing and Analysis at Yangzhou University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2592).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Barboiu, M., Petit, E., van der Lee, A. & Vaughan, G. (2006). Inorg. Chem. 45, 484-486

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Keegan, J., Kruger, P. E., Nieuwenhuyzen, M. & Martin, N. (2002). Cryst. Growth Des. 2, 329-332.

Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yue, Y. F., Gao, E. Q., Bai, S. Q., He, Z. & Yan, C. H. (2004). CrystEngComm, 6, 549-555.

supplementary materials

Acta Cryst. (2009). E65, o286 [doi:10.1107/S1600536809000646]

1,4-Bis(2-pyridylmethyleneaminomethyl)benzene

C. Li, F.-A. Sun, M.-Y. He, H. Xu and Q. Chen

Comment

Bipyridyl-type bidentate Schiff base ligands have been utilized intensively to assemble various coordination polymers with interesting topologies and fascinating structural diversities (Barboiu *et al.*, 2006; Keegan *et al.*, 2002; Yue *et al.*, 2004). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) contains one-half of the centrosymmetric molecule, where the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (N1/C1-C5) and B (C8-C10/C8A-C10A) are, of course, planar, and they are oriented at a dihedral angle of 77.21 (7)° [symmetry code: (A) 1 - x, 1 - y, 1 - z].

Experimental

The title compound was prepared from the condensation reaction between pyridine-2-carboxaldehyde (100 mmol) and 1,4-benzenedimethanamine (50 mmol) in tetrahydrofuran (yield; 83%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature.

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (A) 1 - x, 1 - y, 1 - z].

1,4-Bis(2-pyridylmethyleneaminomethyl)benzene

Z = 1
$F_{000} = 166$
$D_{\rm x} = 1.258 {\rm Mg m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 1582 reflections
$\theta = 2.2 - 27.0^{\circ}$
$\mu = 0.08 \text{ mm}^{-1}$

supplementary materials

$\alpha = 61.086 \ (7)^{\circ}$
$\beta = 88.543 \ (8)^{\circ}$
$\gamma = 82.242 \ (8)^{\circ}$
$V = 414.9 (4) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector diffractometer	1449 independent reflections
Radiation source: fine-focus sealed tube	1250 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 296(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)	$h = -5 \rightarrow 5$
$T_{\min} = 0.976, \ T_{\max} = 0.990$	$k = -12 \rightarrow 12$
2909 measured reflections	$l = -12 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.105$	$w = 1/[\sigma^2(F_o^2) + (0.0582P)^2 + 0.0501P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
1449 reflections	$\Delta \rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$
109 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

T = 296 (2) K Block, colorless $0.32 \times 0.30 \times 0.23$ mm

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
N1	0.8015 (3)	0.26368 (14)	1.18773 (13)	0.0628 (3)

N2	0.4321 (2)	0.26607 (12)	0.89307 (11)	0.0516 (3)
C1	0.7265 (3)	0.20335 (14)	1.10637 (13)	0.0477 (3)
C2	0.8567 (3)	0.06149 (15)	1.12895 (14)	0.0536 (3)
H2	0.7948	0.0215	1.0722	0.064*
C3	1.0786 (3)	-0.01952 (17)	1.23630 (16)	0.0622 (4)
H3	1.1727	-0.1140	1.2519	0.075*
C4	1.1584 (4)	0.04142 (19)	1.31980 (16)	0.0673 (4)
H4	1.3071	-0.0110	1.3937	0.081*
C5	1.0143 (4)	0.18146 (19)	1.29230 (17)	0.0714 (5)
H5	1.0687	0.2215	1.3503	0.086*
C6	0.4970 (3)	0.29926 (14)	0.98916 (14)	0.0497 (3)
H6	0.3968	0.3873	0.9862	0.060*
C7	0.2103 (3)	0.37330 (16)	0.77804 (14)	0.0560 (4)
H7A	0.1281	0.4543	0.7986	0.067*
H7B	0.0484	0.3210	0.7748	0.067*
C8	0.3559 (3)	0.43975 (14)	0.63283 (13)	0.0470 (3)
C9	0.3629 (3)	0.37288 (15)	0.54431 (14)	0.0541 (3)
Н9	0.2705	0.2866	0.5733	0.065*
C10	0.4953 (3)	0.56793 (15)	0.58621 (14)	0.0544 (4)
H10	0.4935	0.6150	0.6438	0.065*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0703 (8)	0.0659 (7)	0.0620 (7)	-0.0068 (6)	-0.0016 (6)	-0.0391 (6)
N2	0.0562 (7)	0.0502 (6)	0.0452 (6)	-0.0045 (5)	0.0029 (5)	-0.0215 (5)
C1	0.0499 (7)	0.0519 (7)	0.0441 (7)	-0.0121 (6)	0.0107 (5)	-0.0246 (6)
C2	0.0571 (8)	0.0527 (7)	0.0524 (7)	-0.0080 (6)	0.0060 (6)	-0.0268 (6)
C3	0.0614 (9)	0.0552 (8)	0.0598 (8)	-0.0025 (6)	0.0032 (7)	-0.0214 (7)
C4	0.0614 (9)	0.0776 (10)	0.0520 (8)	-0.0078 (8)	-0.0027 (7)	-0.0231 (8)
C5	0.0784 (11)	0.0846 (11)	0.0626 (9)	-0.0120 (9)	-0.0046 (8)	-0.0441 (9)
C6	0.0521 (7)	0.0461 (7)	0.0512 (7)	-0.0057 (5)	0.0079 (6)	-0.0245 (6)
C7	0.0507 (8)	0.0607 (8)	0.0542 (8)	-0.0029 (6)	0.0009 (6)	-0.0271 (7)
C8	0.0393 (6)	0.0488 (7)	0.0470 (7)	0.0033 (5)	-0.0071 (5)	-0.0206 (6)
C9	0.0563 (8)	0.0498 (7)	0.0571 (8)	-0.0099 (6)	-0.0004 (6)	-0.0258 (6)
C10	0.0593 (8)	0.0566 (8)	0.0539 (8)	-0.0048 (6)	-0.0020 (6)	-0.0326 (6)

Geometric parameters (Å, °)

N1—C1	1.3358 (17)	C6—C1	1.472 (2)
N1—C5	1.332 (2)	С6—Н6	0.9300
N2—C6	1.2555 (17)	С7—Н7А	0.9700
N2—C7	1.4620 (18)	С7—Н7В	0.9700
C1—C2	1.383 (2)	C8—C7	1.5078 (19)
C2—C3	1.373 (2)	C8—C9	1.3832 (19)
С2—Н2	0.9300	C8—C10	1.383 (2)
C3—C4	1.367 (2)	C9—C10 ⁱ	1.379 (2)
С3—Н3	0.9300	С9—Н9	0.9300

supplementary materials

C4—C5	1.372 (2)	C10—C9 ⁱ	1.379 (2)
C4—H4	0.9300	C10—H10	0.9300
С5—Н5	0.9300		
C5—N1—C1	116.79 (13)	N2—C6—H6	118.9
C6—N2—C7	117.39 (12)	С1—С6—Н6	118.9
N1—C1—C2	122.69 (13)	N2—C7—C8	109.34 (11)
N1-C1-C6	115.30 (12)	N2—C7—H7A	109.8
C2—C1—C6	122.01 (12)	С8—С7—Н7А	109.8
C3—C2—C1	119.09 (13)	N2—C7—H7B	109.8
С3—С2—Н2	120.5	С8—С7—Н7В	109.8
C1—C2—H2	120.5	H7A—C7—H7B	108.3
C4—C3—C2	118.73 (14)	C9—C8—C7	121.61 (12)
С4—С3—Н3	120.6	C10—C8—C7	120.48 (11)
С2—С3—Н3	120.6	C10 ⁱ —C9—C8	121.07 (13)
C3—C4—C5	118.57 (14)	C10—C8—C9	117.88 (12)
C3—C4—H4	120.7	С10 ^і —С9—Н9	119.5
С5—С4—Н4	120.7	С8—С9—Н9	119.5
N1—C5—C4	124.10 (14)	C9 ⁱ —C10—C8	121.05 (12)
N1—C5—H5	117.9	C9 ⁱ —C10—H10	119.5
С4—С5—Н5	117.9	C8—C10—H10	119.5
N2—C6—C1	122.13 (12)		
C5—N1—C1—C2	1.0 (2)	C3—C4—C5—N1	-0.7 (2)
C5—N1—C1—C6	-178.28 (12)	N2-C6-C1-N1	170.79 (11)
C1—N1—C5—C4	0.3 (2)	N2-C6-C1-C2	-8.52 (19)
C7—N2—C6—C1	-177.26 (11)	C9—C8—C7—N2	90.82 (14)
C6—N2—C7—C8	115.21 (13)	C10-C8-C7-N2	-87.19 (15)
N1—C1—C2—C3	-2.0 (2)	C7—C8—C9—C10 ⁱ	-178.00 (12)
C6—C1—C2—C3	177.27 (11)	C10—C8—C9—C10 ⁱ	0.1 (2)
C1—C2—C3—C4	1.6 (2)	C7—C8—C10—C9 ⁱ	178.03 (12)
C2—C3—C4—C5	-0.3 (2)	C9—C8—C10—C9 ⁱ	-0.1 (2)
~			

Symmetry codes: (i) -x+1, -y+1, -z+1.

